\(\int \frac {\cos ^2(e+f x) \sqrt {a+a \sin (e+f x)}}{\sqrt {c-c \sin (e+f x)}} \, dx\) [5]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 38, antiderivative size = 45 \[ \int \frac {\cos ^2(e+f x) \sqrt {a+a \sin (e+f x)}}{\sqrt {c-c \sin (e+f x)}} \, dx=\frac {\cos (e+f x) (a+a \sin (e+f x))^{3/2}}{2 a f \sqrt {c-c \sin (e+f x)}} \]

[Out]

1/2*cos(f*x+e)*(a+a*sin(f*x+e))^(3/2)/a/f/(c-c*sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.21 (sec) , antiderivative size = 45, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.053, Rules used = {2920, 2817} \[ \int \frac {\cos ^2(e+f x) \sqrt {a+a \sin (e+f x)}}{\sqrt {c-c \sin (e+f x)}} \, dx=\frac {\cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 a f \sqrt {c-c \sin (e+f x)}} \]

[In]

Int[(Cos[e + f*x]^2*Sqrt[a + a*Sin[e + f*x]])/Sqrt[c - c*Sin[e + f*x]],x]

[Out]

(Cos[e + f*x]*(a + a*Sin[e + f*x])^(3/2))/(2*a*f*Sqrt[c - c*Sin[e + f*x]])

Rule 2817

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[
-2*b*Cos[e + f*x]*((c + d*Sin[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]])), x] /; FreeQ[{a, b, c, d, e,
 f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[n, -2^(-1)]

Rule 2920

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*
(x_)])^(n_.), x_Symbol] :> Dist[1/(a^(p/2)*c^(p/2)), Int[(a + b*Sin[e + f*x])^(m + p/2)*(c + d*Sin[e + f*x])^(
n + p/2), x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[p
/2]

Rubi steps \begin{align*} \text {integral}& = \frac {\int (a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)} \, dx}{a c} \\ & = \frac {\cos (e+f x) (a+a \sin (e+f x))^{3/2}}{2 a f \sqrt {c-c \sin (e+f x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.49 (sec) , antiderivative size = 62, normalized size of antiderivative = 1.38 \[ \int \frac {\cos ^2(e+f x) \sqrt {a+a \sin (e+f x)}}{\sqrt {c-c \sin (e+f x)}} \, dx=-\frac {\sec (e+f x) (\cos (2 (e+f x))-4 \sin (e+f x)) \sqrt {a (1+\sin (e+f x))} \sqrt {c-c \sin (e+f x)}}{4 c f} \]

[In]

Integrate[(Cos[e + f*x]^2*Sqrt[a + a*Sin[e + f*x]])/Sqrt[c - c*Sin[e + f*x]],x]

[Out]

-1/4*(Sec[e + f*x]*(Cos[2*(e + f*x)] - 4*Sin[e + f*x])*Sqrt[a*(1 + Sin[e + f*x])]*Sqrt[c - c*Sin[e + f*x]])/(c
*f)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(93\) vs. \(2(39)=78\).

Time = 0.16 (sec) , antiderivative size = 94, normalized size of antiderivative = 2.09

method result size
default \(\frac {\left (\cos \left (f x +e \right ) \sin \left (f x +e \right )-\left (\cos ^{2}\left (f x +e \right )\right )+\sin \left (f x +e \right )+2 \cos \left (f x +e \right )-1\right ) \sqrt {a \left (1+\sin \left (f x +e \right )\right )}\, \left (1+\cos \left (f x +e \right )\right )}{2 f \left (\cos \left (f x +e \right )+\sin \left (f x +e \right )+1\right ) \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}}\) \(94\)

[In]

int(cos(f*x+e)^2*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/2/f*(cos(f*x+e)*sin(f*x+e)-cos(f*x+e)^2+sin(f*x+e)+2*cos(f*x+e)-1)*(a*(1+sin(f*x+e)))^(1/2)*(1+cos(f*x+e))/(
cos(f*x+e)+sin(f*x+e)+1)/(-c*(sin(f*x+e)-1))^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 59, normalized size of antiderivative = 1.31 \[ \int \frac {\cos ^2(e+f x) \sqrt {a+a \sin (e+f x)}}{\sqrt {c-c \sin (e+f x)}} \, dx=-\frac {{\left (\cos \left (f x + e\right )^{2} - 2 \, \sin \left (f x + e\right ) - 1\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{2 \, c f \cos \left (f x + e\right )} \]

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

-1/2*(cos(f*x + e)^2 - 2*sin(f*x + e) - 1)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)/(c*f*cos(f*x + e
))

Sympy [F]

\[ \int \frac {\cos ^2(e+f x) \sqrt {a+a \sin (e+f x)}}{\sqrt {c-c \sin (e+f x)}} \, dx=\int \frac {\sqrt {a \left (\sin {\left (e + f x \right )} + 1\right )} \cos ^{2}{\left (e + f x \right )}}{\sqrt {- c \left (\sin {\left (e + f x \right )} - 1\right )}}\, dx \]

[In]

integrate(cos(f*x+e)**2*(a+a*sin(f*x+e))**(1/2)/(c-c*sin(f*x+e))**(1/2),x)

[Out]

Integral(sqrt(a*(sin(e + f*x) + 1))*cos(e + f*x)**2/sqrt(-c*(sin(e + f*x) - 1)), x)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 387 vs. \(2 (39) = 78\).

Time = 0.35 (sec) , antiderivative size = 387, normalized size of antiderivative = 8.60 \[ \int \frac {\cos ^2(e+f x) \sqrt {a+a \sin (e+f x)}}{\sqrt {c-c \sin (e+f x)}} \, dx=-\frac {\frac {2 \, \sqrt {a} \sqrt {c} + \frac {\sqrt {a} \sqrt {c} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {3 \, \sqrt {a} \sqrt {c} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {\sqrt {a} \sqrt {c} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}}}{c + \frac {2 \, c \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {c \sin \left (f x + e\right )^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}}} - \frac {2 \, \sqrt {a} \sqrt {c} - \frac {\sqrt {a} \sqrt {c} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {\sqrt {a} \sqrt {c} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} - \frac {\sqrt {a} \sqrt {c} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}}}{c + \frac {2 \, c \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {c \sin \left (f x + e\right )^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}}} + \frac {2 \, {\left (\frac {\sqrt {a} \sqrt {c} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {\sqrt {a} \sqrt {c} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {\sqrt {a} \sqrt {c} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}}\right )}}{c + \frac {2 \, c \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {c \sin \left (f x + e\right )^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}}}}{2 \, f} \]

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

-1/2*((2*sqrt(a)*sqrt(c) + sqrt(a)*sqrt(c)*sin(f*x + e)/(cos(f*x + e) + 1) + 3*sqrt(a)*sqrt(c)*sin(f*x + e)^2/
(cos(f*x + e) + 1)^2 + sqrt(a)*sqrt(c)*sin(f*x + e)^3/(cos(f*x + e) + 1)^3)/(c + 2*c*sin(f*x + e)^2/(cos(f*x +
 e) + 1)^2 + c*sin(f*x + e)^4/(cos(f*x + e) + 1)^4) - (2*sqrt(a)*sqrt(c) - sqrt(a)*sqrt(c)*sin(f*x + e)/(cos(f
*x + e) + 1) + sqrt(a)*sqrt(c)*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 - sqrt(a)*sqrt(c)*sin(f*x + e)^3/(cos(f*x +
 e) + 1)^3)/(c + 2*c*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + c*sin(f*x + e)^4/(cos(f*x + e) + 1)^4) + 2*(sqrt(a)
*sqrt(c)*sin(f*x + e)/(cos(f*x + e) + 1) + sqrt(a)*sqrt(c)*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + sqrt(a)*sqrt(
c)*sin(f*x + e)^3/(cos(f*x + e) + 1)^3)/(c + 2*c*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + c*sin(f*x + e)^4/(cos(f
*x + e) + 1)^4))/f

Giac [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 53, normalized size of antiderivative = 1.18 \[ \int \frac {\cos ^2(e+f x) \sqrt {a+a \sin (e+f x)}}{\sqrt {c-c \sin (e+f x)}} \, dx=-\frac {2 \, \sqrt {a} \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{\sqrt {c} f \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} \]

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

-2*sqrt(a)*cos(-1/4*pi + 1/2*f*x + 1/2*e)^4*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))/(sqrt(c)*f*sgn(sin(-1/4*pi + 1
/2*f*x + 1/2*e)))

Mupad [B] (verification not implemented)

Time = 9.11 (sec) , antiderivative size = 73, normalized size of antiderivative = 1.62 \[ \int \frac {\cos ^2(e+f x) \sqrt {a+a \sin (e+f x)}}{\sqrt {c-c \sin (e+f x)}} \, dx=-\frac {\sqrt {a\,\left (\sin \left (e+f\,x\right )+1\right )}\,\sqrt {-c\,\left (\sin \left (e+f\,x\right )-1\right )}\,\left (\cos \left (e+f\,x\right )+\cos \left (3\,e+3\,f\,x\right )-4\,\sin \left (2\,e+2\,f\,x\right )\right )}{4\,c\,f\,\left (\cos \left (2\,e+2\,f\,x\right )+1\right )} \]

[In]

int((cos(e + f*x)^2*(a + a*sin(e + f*x))^(1/2))/(c - c*sin(e + f*x))^(1/2),x)

[Out]

-((a*(sin(e + f*x) + 1))^(1/2)*(-c*(sin(e + f*x) - 1))^(1/2)*(cos(e + f*x) + cos(3*e + 3*f*x) - 4*sin(2*e + 2*
f*x)))/(4*c*f*(cos(2*e + 2*f*x) + 1))